CPU Burst Processes Prioritization Using Priority Dynamic Quantum Time Algorithm: A Comparison with Varying Time Quantum and Round Robin Algorithms

نویسندگان

  • Maysoon A. Mohammed
  • Mazlina AbdulMajid
  • Balsam A. Mustafa
  • Rana Fareed Ghani
چکیده

In Round-Robin Scheduling, the time quantum is fixed and processes are scheduled such that no process uses CPU time more than one time quantum in one go. If time quantum is too large, the response time of the processes will not be tolerated in an interactive environment. If the time quantum is too small, unnecessary frequent context switch may occur. Consequently, overheads result in fewer throughputs. Round Robin scheduling algorithm is the most suitable choice for time shared system but not for soft real time systems due to a large turnaround time, large waiting time and high number of context switches. The choice of the quantum time in RR is the optimal solution for the problem of large turnaround and waiting time with RR. In this study, we propose a priority algorithm with dynamic quantum time (PDQT), to improve the work of RR by improving the concept of Improved Round Robin with varying time quantum (IRRVQ). The proposed algorithm gave results better than RR and IRRVQ in terms of minimizing the number of context switches, average waiting time, average turnaround time, design and analysis. The simple RoundRobin algorithm has been improved by about 40%. By controlling quantum time according to the priorities and burst times of the processes, we experience fewer context switches and shorter waiting and turnaround times, thereby obtaining higher throughput. Index Term-Round Robin; dynamic quantum time; priority; burst time; Priority Dynamic Quantum Time.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-queue CPU Process Prioritization using a Dynamic Quantum Time Algorithm Compared with Varying Time Quantum and Round-Robin Algorithms

In Round-Robin Scheduling, the quantum time is static and tasks are scheduled such that no process uses CPU time more than one slice time each cycle. If quantum time is too large, the response time of the processes will not be tolerated in an interactive environment. If quantum the time is too small, unnecessary frequent context switch may occur. Consequently, overheads result in fewer throughp...

متن کامل

Characteristic specific prioritized dynamic average burst round robin scheduling for uniprocessor and multiprocessor environment

CPU scheduling is one of the most crucial operations performed by operating systems. Different conventional algorithms like FCFS, SJF, Priority, and RR (Round Robin) are available for CPU Scheduling. The effectiveness of Priority and Round Robin scheduling algorithm completely depends on selection of priority features of processes and on the choice of time quantum. In this paper a new CPU sched...

متن کامل

Number 7

In Round-Robin Scheduling, the quantum time is static and tasks are scheduled such that no process uses CPU time more than one slice time each cycle. If quantum time is too large, the response time of the processes will not be tolerated in an interactive environment. If quantum the time is too small, unnecessary frequent context switch may occur. Consequently, overheads result in fewer throughp...

متن کامل

CPU Scheduling Algorithms: A Survey

Imran Qureshi Department of Computer Science, COMSATS Institute of Information Technology, Wah Cant Pakistan. Email: [email protected] ----------------------------------------------------------------------ABSTRACT-----------------------------------------------------------Scheduling is the fundamental function of operating system. For scheduling, resources of system shared among processes whic...

متن کامل

Comparative performance analysis of multi dynamic time quantum Round Robin(MDTQRR) algorithm with arrival time

CPU being considered a primary computer resource, its scheduling is central to operating-system design. A thorough performance evaluation of various scheduling algorithms manifests that Round Robin Algorithm is considered as optimal in time shared environment because the static time is equally shared among the processes. We have proposed an efficient technique in the process scheduling algorith...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015